
NASA Contractor Report 3059 

LdAN COPY: 
AFWL -TECMNl 

KIRTLAND 

A Comparative Study of 
Conroy and Monte Carlo Methods 
Applied to Multiple Quadratures 
and Multiple Scattering 

Adarsh Deepak and Alexander Fluellen 

CONTRACT NASl-15198 
DECEMBER 1978 

IUASA i 



TECH LIBRARY KAFB, NM 

llnllllllllllmllPlHHA111 
0063784 

NASA Contractor Report 3059 

A Comparative Study of 
Conroy and Monte Carlo Methods 
Applied to Multiple Quadratures 
and Multiple Scattering 

Adarsh Deepak and Alexander Fluellen 
Institute for Atmospheric Optics G Remote Sensing 
Hampton, Virginia 

Prepared for 
Langley Research Center 
under Contract NASl-15198 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1978 



SUMMARY 

This paper discusses an efficient numerical method of multiple 
quadratures, referred to here as the Conroy method, as applied to the pro- 
blem of computing multiple scattering contributions in the radiative 
transfer through realistic planetary atmospheres', and presents a brief error 
analysis of the method. In these discussions, comparisons are drawn with 
the more familiar Monte Carlo method. Both methods are stochastic problem- 
solving models of a physical or mathematical process and utilize the sampling 
scheme for points distributed over a definite region. However, whereas in 
the Monte Carlo scheme the sample points are distributed randomly over the 
integration region, in the Conroy method, the sample points (N,, in number) 
are distributed systematically, such that the point distribution forms a 
unique, closed, symmetrical pattern which effectively fills the region of 
the multidimensional integration. Conroy has shown that for continuous 
functions with bounded first derivatives, the error ultimately disappears 
at least as l/N$, whereas, in the Monte Carlo method, the error disappears 
as l/ m, where N is the number of trials in the random sampling. The 
methods are illustrated by two simple examples: One, of multidimensional 
integration involving two independent variables, and the other, of computing 
the second order scattering contribution to the sky radiance. 

INTRODUCTION 

In aerosol remote sounding techniques, which require the inversion of 
multiply scattered radiation signals, an object of primary concern is the 
enormous computational costs involved. The solution of the multiple scat- 
tering problems often involves numerical computation of multidimensional 
integrals with several independent variables. Thus, in order to keep the 
costs of such numerical inversions from becoming prohibitive, it is 
imperative that multiple scattering computations for realistic atmospheres 
be performed efficiently and economically. 

This paper discusses an efficient numerical method of multiple 
quadratures, developed by Conroy (ref. 1) in 1967, and referred to here as 
the Conroy method, as applied to the problem of multiple scattering 
calculations. The method and its results are compared with those for the 
more familiar Monte Carlo method (refs. Z-9), which, as it is known today, 
had its origins in the 1940's. 

Both the Conroy and the Monte Carlo methods are stochastic problem- 
solving models of either a physical or a mathematical process. An 
illustration for each of these two types of processes will be discussed 
in a later section. Both of these methods utilize the sampling scheme 
for points distributed over a definite region. However, in the Conroy 
scheme, the sample points are distributed systematically over the region 



of integration, whereas, in the Monte Carlo method, they are randomly 
distributed. In addition, the ensemble of points, in the Conroy method 
(ref. l), forms a unique, closed, symmetrical pattern which effectively 
fills the region of the multidimensional integration. To generate such 
an arrangement of the sample points, the Conroy method employs certain 
rational constants. A table of such constants, suitably optimized, which 
will permit integration of functions with up to 12 independent variables, 
is given in Table III in reference 1, and is reproduced in Table 1 in this 
paper. The Monte Carlo method employs a random number generating scheme 
which governs the random distribution of sample points. 

In this paper, a brief statistical-analytic treatment of the error 
characteristics of the two methods is also discussed. For instance, 
Conroy (ref. 1) has shown that for continuous functions (of many independent 
variables) with bounded first derivatives, 
at least as rapidly as l/N$, where N, 

the error ultimately disappears 
is the number of sample points 

used, whereas, in the Monte Carlo method, the error disappears at the rate 
of l/m, where N is the number of trials in the random sampling process. 
In addition, for runs of practical length, the error limits with the Conroy 
systematic sampling scheme are smaller than those with the Monte Carlo ran- 
dom samplingscheme - by a factor ranging from 2 to perhaps lo4 or more 
(ref. 1). 

The two methods will be applied to two simple cases: (1) A 2-dimensional 
integration of a simple mathematical function of two variables, as an example 
of a nonsimulation type mathematical process; and (2) a 2-dimensional 
integration as it occurs in the physical process of computing the double 
scattering contributions to circumsolar sky radiance. 

It is a pleasure to gratefully acknowledge the stimulating discussions 
with John N. Shoosmith on the Monte Carlo method and with Gail Box on the 
computational aspects in connection with this work. 

THE CONROY AND MONTE CARLO METHODS 

Consider the following simple 2-dimensional integral 

Conroy Method 

According to Conroy (ref. l), an approximation to the integral in 
equation (1) is the sum Sl(N) defined as follows: 

(1) 

N 
Sl(N) = j$ C $(2{mZ - Z1) 

m=1/2 

2 

(2) 



I 

where F(q,q) = f (1x11, I4 may be regarded as a periodic function 
with period two in each of the variables (x1,x2) ma 

P P 
x1 x2 a =-,and a=- 

x1 M x2 M 
(3) 

where the P's are selected odd integers and N is a positive integer, i.e., 

M= 2N + 1 (4) 

and e, , e, are integers chosen so that each component of the vector 

within kaces2falls within the range (-l/2, l/2). F(xl,x2) is an even 
function about (xl = 0, x2 = 0) and is evaluated at M/2 sample points 
(ref. 1). 

Monte Carlo Method. 

On the other hand, the application of the Monte Carlo method to the 
evaluation of the multidimensional integral in equation (1) is explained 
as follows. 

Suppose the experimentally estimated probability of winning a simple 
game of throw of dice gives the area A underneath the curve 

y = f(x) 

then we may define A as 

1 
A= I f(x)dx 0 2 f(x) - 15 1 

0 

(5) 

(6) 

Thi.sreasoning can be used to generalize the above process to a multi- 
dimensional integral (ref. 2). The efficiency of the process does not 
depend at all upon the detailed microscopic character of the function 
f(x) but only on a very gross characteristic - the total area, or in 
the case of a multidimensional integral, the total multidimensional volume. 
Thus, the simplest and most direct application of the Monte Carlo method 
is to the evaluation of multidimensional integrals (ref. 2). 

3 
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Now consider the functional equation F(xl,x2) in two independent 
variables xl and x9 to be integrated over a definite region in which 
&+x2) is-the probability density function (PDF) defined such that 

O<g(x x)<l - 1'2 - (7-l 

For every g(xl,x2);there exists a point (x1,x2) belonging to the inte- 
gration region such that 

dx 1' 2 x )dxldx2 = 1 (8) 

The expected value <F> for the multidimensional integral of the function 
F(xl,x2) can be represented accordingly 

II F(xl,x2) g(x1,x2)dxldx2 = <F(xl,x2)> = <F> 

where <F> is the expected value of the functional equation F(xl,x2) with 
respect to the PDF g(xl,x2). One can think of g(xl,x2) as being pro- 
portional to the joint probability that X1 = x1 and X2 = x2, where 
g(xl,x2!dxlax2 is the probability that xl 5 Xl < xl + dxl and 
x2 < X2 < x2 + dx2 (ref. 2). The representation of this multidimensional 
integral-in two independent variables can be generalized to any number of 
independent variables. 

According to the Monte Carlo method (ref. 2 ), an approximat 
the integrand in equation (9) can be obtained by sum as follows: 

N 
F(N) = i C F(xljyx2j) 

j=l 

ion to 

. (10) 

where F(N) is called the sample average an$ a number N of sample values 
Cxlj Tx2. ) 

gbq,x2 3 

are picked from the PDF g(xl,x2) , where g(q,x )+ is contained 
and the function r 

(ref. 1). 
F(xl,x2) is evaluated for each 

F(q,qd 
x1,4 

Here as in the Conroy method, may be regarded as a 
periodic function. Thus, as is evident, both the Conroy and Monte Carlo 
methods for approximating the expected value <F> of the integrand are 
obtained by an averaging summation process in a similar manner. 

The Monte Carlo method does not enable one to obtain accurate numerical 
values of the variables that appear in the integrand. These approximate 
numerical values do not necessarily bias the estimating procedure, rather 
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it only increases the statistical error of the calculation as compared with 
what would have been obtained had correct values been used. In other 
words, the Monte Carlo method is suggestive and normative rather than 
explicitly directive. 

ERROR ANALYSIS FOR CONROY AND MONTE CARLO METHODS 

There are two basic types of error one has to contend with in multi- 
dimensional integration. The first type results from the inaccuracy of 
the numerical values of the variables of the integrand. Since these values 
are the result of stochastic processes, one may calculate the error bound 
of t/he'integrand by using an advance estimation technique called upper and 
lower limits of error. The second type of error results from the actual 
sampling process, whether it is done systematically or randomly. However, 
it is in the random sampling process that the greatest amount of statistical 
error occurs. Therefore, in the Monte Carlo method there are several 
reduction techniques used. to reduce statistical sampling error (ref. 3) 
whereas in the Conroy method the systematic selection process guarantees the 
least amount of statistical error. 

The upper and lower bound estimate technique is designed to estimate 
the magnitude of error to be anticipated in both the Conroy and Monte Carlo 
methods for periodic functions. In the Conroy integration scheme, the 
greatest concern is the method's capability of estimating the rate of 
improvement in accuracy as the number M of sample points is increased, 
As mentioned earlier, the P's are the selected odd integers. It should 
be kept in mind that in estimating the maximum error anticipated for a 
given periodic function to be integrated, a new, appropriately constructed, 

value of M set of integers, P, will be furnished for each new, larger 
to be used. (See Table 1.) 

-f 
Suppose that F(z), where x is k component vector, is to be integrated 

ly convergent Fourier series defined and that it represents an absolute 
accordingly: 

(11) 

where i=6 and g stands for the combination of integers (nl, n2 . ..nk). 
the summation C;: is multiple over the k dimensions with each index ni 
in the range (-m,-). Furthermore, suppose it is also the case that for 
every s such that s > 0 there exist a constant C,, such that if none of 
the ni = 0, we have (ref. 4): 
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Il,i_..-_-.--_~ .. --_--_ 

IanI ICs b-y2 - nJs (12) 

We will assume that, if any of the ni = 0, the same inequality holds with 
the zero factors omitted from the denominator on the right-hand side. 

Let the range of summation of the indices nl, n2,' ..nk be subdivided 
into V zones such that Ni < ni < 2Ni, then given a fixed set P whose 
maximum positive value is denoted by n-P for a particular zone V may 
then be specifically designated as (n*P)min- Therefore, for the zone V 
the range of possible values of the function n-P has the width WV, i.e., 

WV = (n*P)max - (n*P)min (13) 

The total number of combinations (nl, n2---nk) that can occur within 
zone V is INl,N2... N& Only certain discrete values are solution eigen- 
vectors of the Diophantine equation n-P = JM where J is an integer and M 
and P are fixed quantities. We must always construct our P's so that 
neither M nor zero will ever be a submultiple of Pi, or of any simple sum 
or difference of the Pi because these eigenvectors will not contribute to 
the error eigenvectors, i.e., The number of eigen- 
vectors generated by a zone V 'Y~'a~pZoiEEe~~ P, = INlN2...NklM-% 
However, for well-constructed sets P, the number may be less than P, 
(ref. 3). None of the P, eigenvector solutions to the Diophantine 
equation (see Appendix A) from zone V have a Fourier coefficient of 
magnitude IanI larger than csINlN2...Nkl-S. Thus, the error bound can 
be written ascendingly as a summation over all zones, provided of course 
this summation converges (ref. 1). 

The method for estimating error in the Monte Carlo method is the same 
as that used in the Conroy method for periodic functions. Any statistical 
estimate has an error which can be estimated in terms of the variance. In 
multidimensional integration, one may mathematically describe the variance 
accordingly, in general: 

V = [F(xl,x2) - F-j2 

1 =- 
N II ' 

F(x pg - 73 2] g(xlx2)ax ax 12 

(14) 
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Often it is profitable to change or at least distort the original 
problem in such a way so that uncertainty, due to random sampling in the 
solution, is reduced. Such procedures are known as variance reduction 
techniques, because uncertainty can be measured in terms of variance when 
the random sampling method is the basis of the multidimensional integration 
process. 

There are six techniques of variance reduction that are most useful 
in estimating error in Monte Carlo calculations (ref. 2). 
(1) Importance Sampling; 

They are: 
(2) Russian Roulette and Splitting; (3) Use of 

Expected Values (combination of analytic and probabilistic methods); 
(4) Correlation and Regression; (5) Systematic Sampling; and (6) Stratified 
Sampling (Quote Sampling) (ref. 5). 

In order to illustrate the general nature of the techniques, they are 
first applied to a very simple example and their brief discussion is 
included in Appendix B. The discussion of how the six techniques can be 
applied to the Monte Carlo evaluation of definite integrals is left for 
a subsequent publication. The integral is used as an example not because 
it is the main application of the technique - it is not (except in the 
generalized sense that any expected value can be calculated by an integral) - 
but rather because it is the application in which the ideas are most clearly 
exposited (ref. 5). 

The simple example used in the problem of calculating the probability 
of obtaining a total of three when one tosses two ordinary dice. Each die 
is of the standard sort with six faces labeled from one to six and con- 
structed so that each face has the probability (l/6) of being on top. 

The problem can, of course, be solved analytically. Any particular 
combination of the dice has a probability equal to 116 times 116 of 
occuring. Since there are two combinations which make three (one-two and 
two-one), the probability of getting a three in a random toss of the dice 
is z/36 or l/18. 

In doing the above problem by Monte Carlo, one would simply toss the 
dice N times, count the number (n) of successes (three's) and then estimate 
the probability (p) of success by 

(15) 

A 

Typically, p differs from p; that is, the estimate has a statistical 
error. This statistical error is usually measured by the standard 
deviation 0, where 

G=po 
N (16) 

7 



The percent error E is then given by 

E = = = 100 l-p 
P N (17) 

This implies that the error decreases as the number of trials is 
increased. However, as mentioned earlier, there are other ways, namely, 
the variance reduction techniques (Appendix B) by which the errors can 
be decreased. 

MULTIDIMENSIONAL INTEGRATION WITH TWO 

INDEPENDENT VARIABLES 

As an example of the multidimensional integration in two independent 
variables, the following simple double integral 

I 2 cos 0 2 
1 cos 02d61 do 2 (18) 

is considered. Its exact analytical solution is 

2 
I = 5 = 0.61685 

Against this exact result for equation (IS), the results obtained by 
numerical integration by the Conroy and Monte Carlo methods are compared. In 
the Conroy method, the number of sample points, M, selected were 538 and 
1154 for k = 2, the dimensions of the integration, as given in Table 1. 

The sample point distribution was then generated by the values of 
(Pl, P2) given for M = 538 and 1154 by using equation (3). The result is 
given by the summation in equation (2) in which el and e2 are equal to 
kand M=N/2. 

The results of the two-dimensional integration of equation (18) by the 
Conroy method, as well as the Monte Carlo method, are given in Table 2. 
They clearly show the greater accuracy and efficiency of the Conroy method 
over the Monte Carlo method and are discussed in the concluding section. 



DOUBLE SCATTERING CONTRIBUTIONS TO SOLAR 

AUREOLE RADIANCE 

The approach adopted and the concepts and assumptions used in obtaining 
the expressions for the sky radiance due to the second and higher order of 
scattering have been explained in references 10, 11, and 12. Some of the 
salient features of the treatment are recapitulated as follows. 

The basis of the theoretical treatment is (1) to treat the radiance 
due to multiple scattering as the sum of contributions due to the various 
orders of scattering, and (2) to consider the Nth order scattering as the 
result of N single scatterings. 

The following reasonable simplifying assumptions have been made: 

1. The atmosphere is treated as plane-parallel. 

2. The atmosphere is composed of air molecules and (various species of) 
aerosols. 

3. The atmosphere is vertically homogeneous in the size distribution and 
inhomogeneous in number density; i.e., the altitude size distribution is a 
separable function of the form 

rl(r,y) = n(r)PA(y), [cme3wns1] @o) 

which represents the case when the size distribution, n(r), of the aerosols 
does not vary with altitude. P (Y) is a dimensionless parameter representing 
the altitude dependence of the + otal concentration (density) of the aerosol 
particles. 

4. The atmosphere is horizontally homogeneous. 

5. The effects of absorption, polarization, and ground reflection are 
ignored. 

The geometry of the problem is illustrated in figure 1. The volume 
element, avl, which in the case of single scattering (SS) is illuminated 
by light scattered by another volume, dV2, anywhere else in the surrounding 
space. The dihedral angle between the detector-zenith and zenith dV2 
planes is wl, and that between dVl -zenith and zenith-sun planes is w2. 
These are related to the dihedral angle 
and the zenith-sun planes by the relation 

wps between the detector-zenith 

w2 =Tr+fJl --w 
Ps 1 
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The first scattering takes place at dV2 and the second at avl 
(fig. 1): 

dV 2 = R$ sin I$, a$, am2 dy2 set $2 

and 

2 dVl = RldRldRl = R: sin I$ 
P a4p da1 wl set 4p 

The scattering angles ‘4~2 and '4~~3 at the volumes dV2 and dV1, 
respectively, are related to the directional angles as: 

cos $, = cos 4 
S 

cos $I 2 - sin 0, sin $J~ cos w2 

and 

cos $1 1 = cos $I 
P cos +2 - sin (I 

P 
sin $, cos w 1 

The altitude dependent volume scattering functions (VSF) F' are 
given by 

F1(II12,y2) = ' Fi(~2)Pi'y2) [km-'sr-'1 
i 

and 

F'(+yl) = c Fj$')Pj(Yl) [kmW1srD1] 
j 

(22a) 

(22b) 

(23a) 

(23b) 

(24a) 

(24b) 

where i,j = M and A, represent the molecular (M) and aerosol (A) species 
that significantly contribute to the sky radiance, and F's represent the 
VSF's. 

The optical depths are determined for each path length just as in the 
SS analysis (ref. 8) and are defined by 

10 



co 
T(Y) = k(A) P(y)dy (25) 

By tedious but straightforward mathematical manipulation, we may express 
the sky radiance due to dS in the form 

B2(Us,w ps,$p) = Ho(X) $l e 
-T(O)sec 9, I 

where 

1 = [ dYi ( aY2 [ ~‘~KP -Ta(Yl)Dla + T~(Y~)D~~] 

IF(w ,,$,)1 set $2 sin 9, dw2d$2 

(26) 

(27) 

and 

F(u~,$~) = F'($2,~2)F'(Ql~~l)e 
~a(Ylb-~a(Y2qD2a + b,(q)- p(Y2P2p 

(28) 

D = D = - set + la lp P 
+ set 4 D s' 2a =D 

2P 
= set I$~' - set @s (29) 

The following simple two-dimensional integral is considered for 
evaluation by the Conroy and Monte Carlo methods: 

(30) 

where 

f($,). = set $2 sin +2 (31) 
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Transforming the variables of the definite integral so that the limits of 
integration are (O,l), one has 

11 

I2 = 21T2 F(ro2,2aw2)f(@2)d$ dw 
.2 2 

11 

I2 = 2Tr2 F2(02,2~~2)d~2a+2 

(32) 

(33) 

where w2 and $2 are independent variables, 

a. Evaluation of equation (33) by the Conroy method: 

The double scattering contributions to sky radiance were computed at 
four angular distances from the center of the sun at solar zenith angle & 
= 57O, in the sun vertical, which is the plane passing through the detector, 
the sun and center of the earth. The zenith angles for the four angular 
directions were @p = 600, 630, 66O, and 720. The double integral over the 
angular coordinates was evaluated by the Conroy method with both M = 538 
and 1154. The results are shown in Table 3. 

b. Evaluation of equation (33) by the Monte Carlo method: 

For a description of the Monte Carlo procedure one is referred to 
several excellent papers on the subject (refs. 2-9). Since the main thrust 
of this paper was to compare the Conroy method with the Monte Carlo method 
in the solution of radiative transfer problems involving, for simplicity, 
only second order scattering, one restricts the computations to the same 
double integration over the two angular coordinates (0,~) as in the Conroy 
method, and to the same number of trial histories as the number of sample 
points in the Conroy scheme, namely, 538 and 1154. The results are shown 
in Table 3. In the Monte Carlo scheme, the azimuthal angle w, and the 
zenith angle are given by w = 7~(2Rl-l), and 4 = sinm1(2R2-l), where Rl 
ma R2 represent random numbers. 

DISCUSSION OF RESULTS AND CONCLUDING REMARKS 

The aim of the paper was to discuss the basic features and the error 
analysis of the Conroy method for solving multidimensional integrals as 
applied to the problem of radiative transfer in a scattering atmosphere and, 
at the same time, compare these aspects with those of the Monte Carlo 
method. This being a preliminary study in the application of the Conroy 
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method to radiative transfer problems, the discussion is confined to 
simple examples of a physical and nonphysical process. The two methods were 
applied first to the multidimensional integration in two independent 
variables (81,82) of a trigonometric function cos201cos2 02, and then, 
to simple problem of computing the second order light scattering contri- 
butions to the sky radiance. The former represents a typical nonphysical 
process and the latter, a typical physical process (ref. 9). The results 
of the numerical computations made by the two methods are shown in Tables 2 
and 3. It is seen that the Conroy method gave results that agreed with 
exact analytic results for the trigonometric integrand to within 0.5 percent. 
On the other hand, the Monte Carlo method, for the same number of trial 
histories as the number of sample points in the Conroy method, produced 
results which agreed with exact values to within 2 percent. The agreement 
improved to within 1 percent as the number of trial histories was increased 
up/to 5,000. This clearly shows the greater efficiency and accuracy of the 
Conroy method over the Monte Carlo method for the case of double integration 
of a mathematical function. On the other hand the results obtained for the 
second order scattering problem by the Monte Carlo method differed considerably 
from those obtained by the Conroy method. It seems that more trial histories 
for photons should be undertaken to reduce the discrepancy, thereby making 
it computationally far more expensive than the Conroy method. Of course, one 
realizes that to succinctly illustrate the greater efficiency of the Conroy 
method, the ideal procedure would have been to keep on increasing the number 
of trial histories in the Monte Carlo method till the results agree with those 
obtained by the Conroy method. However, because of constraints on computation 
costs, the present computational procedure was adopted, keeping in mind that 
the main thrust of the paper was to point out to the radiative transfer corn= 
munity the existence and the advantages of the Conroy method. Further-work 
is planned to carry out the former procedure. 

In the evaluation of the second order scattering problem, it is 
suggested that the three-dimensional integration over the angular and 
altitude position variables 9, w and y, should be performed by both the 
Conroy and Monte Carlo methods. In remote sensing problems, often the 
numerical computations for solving the radiative transfer equation(s) 
become prohibitively expensive, and, therefore, it is essential that efficient 
methods be sought that increase the efficiency and reduce the computation 
costs. This paper has shown that the Conroy method is an efficient and 
economical method. It is, therefore, recommended that the use of the Conroy 
method be further explored in radiative transfer problems and particularly 
in solving cases which involve orders of scattering higher than two. 

13 



APPENDIX A 

DIOPJJANTINE EQUATIONS 

Diophantine Equations is the name given a branch of mathematics on the 
theory of numbers. It treats the problem of finding the solutions, in 
integers of rational or complex (continued) fractions, for one or more 
conditional algebraic equations whose coefficients are rational. Fermat's 
Last Theorem on the integers, expressed by the generalized equation 
xn + yn = zn , where x, y, and z represent the sides of a triangle, 
respectively, that are integral and n is an integer, is often referred 
to as a basic Diophantine Equation. From this generalized equation, one is 
able to show that x = 2kmn, y = k(m2 - n2> and z = k(m2 + n2), where 
k is an arbitrary positive integer, are all of the positive integral 
solutions of xn + yn = zn. Another equation that is a topic of Diophantine 
analysis is the theory of quadratic forms, which is expressed in equation 
form as ax2 + bxy + cy2 = m, where x and y for a, b, and c are 
given integers. This equation may be solved by use of a linear transformation 
or by an older method known as continued fractions. 
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APPENDIX B 

VARIANCE REDUCTION TECHNIQUES 

1. Importance Sampling 

If by some method one can increase the effective value of p, 
equation (17) shows that the percent error will be reduced. This increase 
in the effective value of p can be obtained very easily. One could, 
for example, bias the.dice so that the probability that a one or a two 
would come up is twice as great as usual, that is l/3 rather than i/6. 
This could be done with physical dice by "loading" them, or with 
mathematically simulated dice by using a biased table of random numbers. 
If this is done, then the probability of getting a three, instead of 
being l/18, is four times as great or 2/g. The percent error is then 
cut by slightly more than a factor or two. Of course, equation (15) can no 
longer be used to estimate p, but 

(34) 

must be used instead. The l/4 in equation (34) is called a weighting factor. 
By using it, the distortion introduced by the bias sampling is removed. 

This illustrates the general idea of importance sampling - which is to 
draw samples from a distribution other than the one suggested by the problem 
and then to carry along an appropriate weighting factor which, when 
multiplied into the final results, corrects for having used the wrong 
distribution. The biasing is done in such a way that the probability of 
the sample's being drawn from an lrinterestinglr region (ref. 3) is increased; 
the probability that it comes from an lluninterestingtl region is correspond- 
ingly decreased. It seems correct to carry the bias to the limit; that is, 
the probability of getting a one or a two could be increased by a factor of 
three, making the probability of obtaining one of these numbers l/2 and 
making the probability of obtaining any other number zero. 

The above limit is not the ultimate limit. For example, if one tossed 
the dice one at a time, then one might want to bias the second die dif- 
ferently from the first one. In particular, if one is willing to let the 
biasing of the second die depend on the outcome of the first throw, one 
might consider the following scheme. 

1. Increase the probability of getting a one or a two on the first die 
by a factor of three. This means, of course, that there will be a zero 
possibility of getting any other numbers. 

2. If the first die comes up one, increase the probability of the second 
die coming up two by a factor of six; if the first die comes up two, increase 
the probability of the second die coming yp one by a factor of 6. 
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If this scheme is followed every toss of the dice will yield a three so 
that the number of successes (n) will be equal to the number of trials (N). 
The weighting factor will be l/3 times l/6 or l/18 and the estimate will be 

A 1 
P z-z- 

1;N 18 (35) 

which is exactly equal to p. We have devised a sampling procedure which 
has zero variance. In principle, though not in practice, it is always 
possible to design an importance sampling scheme that has zero variance. 

2. Russian Roulette and Splitting (Ref. 3) 

Let us assume that the dice are tossed one at a time and that the 
cost of the problem is measured by the total number of tosses. Now, it 
is immediately clear that if the first die is tossed and if it happens to 
come up three or greater, it will be impossible to get a total of three, 
no matter how the second die comes up. Under these circumstances, there 
is no point in making the second toss and we can simply record a zero for 
the experiment. This makes it unnecessary to toss the second die 2/3 of 
the time. Therefore, on the average we will do l/3 fewer tosses in an 
experiment. 

Generally, in more complicated examples where the sampling is done 
in stages, it is often possible to examine the sample at each stage and 
classify it as being in some sense "interesting" or "uninteresting." 
The sensible calculator is willing to spend more than an average amount 
of work on the "interesting" ones and contrarywise wants to spend less 
effort on the "uninteresting" ones. This can be done by splitting the 
"interesting" samples into independent branches, thus getting more of 
them, and by killing off some percent (in the above example 100 percent) of 
the "uninteresting" ones. The first process is splitting and the second 
Russian roulette. 

The "killing off" is done by a supplementary game of chance. If the 
supplementary game is lost the sample is killed; if it is won, the sample 
is counted with an extra weight to make up for the fact that some other 
samples have been killed. The game has a certain similarity to the Russian 
game of chance played with revolvers and foreheads - whence the name. 

The idea of Russian roulette and splitting is similar to the sequential 
sampling schemes of quality control, though quite different in detail 
(ref. 6). It was first thought of in connection with particle diffusion 
problems. Particles which get into interesting regions are split into n 
independent subparticles, each with one nth of the weight of the original 
particle. Particles which get into uninteresting regions are, in effect 
amalgamated into a fewer number of heavier particles. In this way the 
calculator achieves its goal of allocating its effort sensibly. 
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3. Use of Expected Values 

If the sampling is being done in two stages, then even if one is not 
clever enough to calculate the combinatorics of the whole problem, one still 
might be clever enough to notice that there is no point in tossing the 
second die; that is, once the first die is tossed, it is trivially easy to 
calculate the probability when we want to obtain a total of three. For 
example, when the first die comes up one, the only way one can get the three 
total is for the second die to come up two. This event obviously has a 
probability of l/6. Similarly if the first die comes up two, the only way 
to get three is for the second die to be one. This event has a probability 
of 1/6. Finally, all the other possibilities for the first die (three to 
six) have a zero probability of giving three. 

If one records the probabilities rather than toss the second die, then 
it is a fact that the average of these probabilities is an estimate of p. 
This method of doing the problem simultaneously reduces the number of 
tosses we need by a factor of two and decreases the variance, so that the 
tosses we do make are more effective. 

The illustration is not artificial. In many probabilistic problems, 
it turns out that much of the variance or fluctuation is introduced by a 
part of the probabilistic problem which can be calculated analytically; 
while the probabilistic part, which is hard to calculate analytically, in 
fact, may not introduce much fluctuation. In these cases the sensible 
calculator combines analytic and probabilistic methods - calculating 
analytically that which is easy and Monte Carloing that which is hard. 

The three techniques discussed above can be extremely effective in 
realistic applications. In some applications it was found that each 
technique has, by itself, decreased the effective variance by factors of 
the order of lo4 to lo6 (ref. 7). In most cases this means changing 
the problem from one which cannot be done because it would be too expensive 
or lengthy to one which is easily done on modern computing machines or even 
by hand computers. 

The three techniques which will now be discussed are, in general, not 
as effective as the three already mentioned. However, they often are very 
easy to use and may yield substantial improvements. 

4. ___- Correlation and Regression 

In order to illustrate this technique, it will be necessary to change 
the example slightly. Assume, for instance, that the proprietor of a 
gaming establishment wishes to change the rules in force at his dice 
tables. Under the current rules, if a player tosses a 2, 3, or 12, on 
the first throw of the dice, the player loses. If he tosses a 7 or 11, 
he wins, and if he tosses a 4, 5, 6, 8, 9, or 10, he will win or lose, 
depending on whether'or not the number or a 7 comes up first in his 
subsequent throws. 
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Now let the rule change being considered be the interchange of 
the roles of 3 and 4 and assume that, unlike most of the other proprietors, 
the one that is being considered is unsophisticated and wishes to determine 
by sampling what the change in his revenue will be. The obvious way to do 
this is to run two sets of experiments, one with the old rules and one with 
the new rules, and then compare the two experimentally-determined revenues. 
Under these circumstances, one is subtracting two relatively large, 
fluctuating quantities to determine a small quantity. In general, this 
yields a process with a large percent error. 

There is a better way to do this problem. Instead of running two 
independent games, the proprietor could run only one game and apply both 
sets of rules simultaneously to this game. In fact, he can choose to 
estimate the difference in revenue directly rather than the revenue that 
would be achieved under each set of rules. 

This can be done by playing the following game: 

1. Whenever a 3 comes up, continue to toss the dice until either a 3 
or 7 comes up. In the first happenstance, record a minus two, since under 
the old rules the customer would have lost a dollar, but under the new 
rules he wins one; in the second happenstance, record a zero because under 
both sets of rules the customer loses. 

2. Follow a similar process if a 4 comes up. 

3. If a number other than 3 or 4 comes up terminate the plan then and 
there and record a zero. (Because of this rule, the effects of chance 
fluctuations in the proportionate number of times that the numbers 2 and 
5 to 12 come up are eliminated from the comparison.) 

It should be noticed that the specific game that is played is quite 
different from the two games that are being compared. As usual, this 
causes a double saving of efficiency; first because only one set of games 
is played, and second because the number and kinds of chance fluctuations 
that can affect the results are greatly reduced. 

It is, in fact, generally true that if we wish to compare two or 
more situations, we can, by combining this comparison into a single problem, 
reduce the work substantially. Only one problem, rather than several, has 
to be done, and the direct estimate of the difference can usually be made 
more accurately than estimates on separate individual quantities. 

This is a substantial virtue of the Monte Carlo method. In many 
complicated problems one is not actually interested in absolute values 
but only in comparisons. One may wish, for example, to know if stragegy A 
is better than strategy B, or if engineering design A is better than 
engineering design B. One might, in fact, not even believe the absolute 
values because the idealizations are so rough, but one does believe the 
qualitative features implied by differences. Monte Carlo can then be 
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used to estimate the thing which we actually desire to know and which one 
believes and one can by-pass the estimate of irrelevant quantities. Usually, 
however, one can obtain these also, but at some extra cost. 

Correlated sampling can also often be used to test the accuracy of 
an approximate theory (ref. 3). If the approximate theory happens to be 
an exact treatment of an idealized situation, and if the idealized situation 
happens to be "structurally" similar to the unidealized situation, then 
it is often possible to design very efficient sampling schemes to calculate 
the difference between the idealized and unidealized situations. The 
answer to the problem posed by the unidealized situation can then be obtained 
by adding together the results of the approximate analytic calculation and 
the Monte Carlo difference calculation. 

5. Systematic Sampling 

If one is doing a multistage sampling problem, it often turns out 
to be very easy to do the first stage systematically (ref. 7). For example, 
the problem under consideration, if one is going to toss the dice one at a 
time then there is really no point in actually tossing the first die. If, 
for example, one is planning on getting 600 samples, one would expect on 
the average that each die would come up one about 100 times, two another 100, 
and so on. It is easy to show that one does not bias the results if one 
assumes that the first 100 tosses of the first die actually do come up one, 
the second 100 tosses of this die come up two, etc., and so only toss the 
second die. The main advantage in doing this is that one has eliminated 
the error caused by the fluctuation in the proportions of ones, twos, etc., 
which would result if the first toss was random. 

In practice, however, doing the first stage of the sampling systematically 
does not usually lead to substantial improvements in efficiency. Generally, 
in fact, it will only reduce the number of samples required by a relatively 
few percent - say 5 to 30. However, it ordinarily does not cost anything 
to apply this technique, so that there is no point in not using it. About 
the only time one may not be able to use it conveniently is when one does 
not know in advance how big a sample one will want. 

6. Stratified Sampling 

This last technique is a sort of combination of importance sampling 
and systematic sampling. For example, if one is only a little bit 
sophisticated and is doing the systematic sampling described above, one 
would soon notice that there is no point in considering the 400 tosses in 
which one had assigned the values three to six for the first toss of the 
die, since under these circumstances, one can never get a total of three. 
Therefore, we might systematically divide the sample into halves rather 
than sixths. In the first half we would say that the first die came up 
one, and in the second half that the first die came up two. 
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In theory, this method could be as powerful as importance sampling. 
In actual practice, the fact that you have to sample systematically turns 
out to decrease sharply the number of places in which it can be used. 
However, where it can be used, it is usually better than importance 
sampling and in any case-never worse. Therefore, whenever the costs of 
the two techniques are comparable, stratified sampling is preferable to 
importance sampling (ref. 3). 
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Table l.- Optimized Parameters (M,P) for Multiple Quadratures by 
Conroy Method (Ref. 1) 

M 
Pl 
p2 

52 538 1154 3722 6044 
15 171 177 1259 1427 
25 177 415 1403 1891 

k=4 

M 
Pl 
p2 
P3 
P4 

1154 3722 6044 
103 119 687 
217 203 1385 
453 235 2843 
521 1849 2933 

k=6 

M 
Pl 
p2 
P3 
P4 
P5 
P6 

1154 2008 3722 6044 9644 
17 177 205 587 1177 
71 451 399 671 1269 

151 453 6-n 673 1625 
203 565 1051 1459 1947 
209 665 1163 2363 3369 
385 833 1811 2697 4087 

k=8 k=9 

M 
Pl 
P2 
P3 
P4 
P5 
P6 
P7 
P8 

3708 6044 9644 
151 43 129 
187 61 525 
333 179 2373 
357 1421 2731 
839 1479 3351 
947 2039 4145 

1245 2189 4119 
1839 2783 4767 

k = 11 k = 12 

M 
Pl 
p2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

3722 

4'19 

4211 
649 
671 
705 

1213 
1297 

6044 
159 
289 
309 
349 
471 
523 
727 
847 
951 

PlO 1559 1665 
Pll 1719 2899 

k=2 k=3 

M 
Pl 
p2 
P3 

52 538 1154 3722 6044 
5 115 11 653 595 
7 241 369 1005 1359 

11 251 569 1483 1865 

k=5 

M 
Pl 
p2 
P3 
P4 
P5 

1154 3722 6044 
107 263 681 
211 1049 1113 
225 1145 1163 
459 1441 1853 
547 1759 2349 

k=7 

M 
Pl 
p2 
p3 
P4 
P5 
P6 
P7 

1154 3722 6044 
3 669 35 
5 819 397 

37 845 1427 
377 857 1467 
393 1379 1891 
479 1421 2805 
559 1439 2865 

k = 10 

M 3722 6044 9644 
Pl 119 43 457 
p2 339 87 509 
P3 437 179 1677 
P4 773 1421 1723 
p5 937 1479 2173 
P6 1219 1589 2423 
p7 1503 2189 2489 
P8 1697 2191 3431 
pg 1747 2783 3719 

9644 
205 
723 
731 

1693 
2215 
2383 
2583 
2787 
2961 
3061 
3123 

M 
Pl 
p2 
p3 
P4 
P5 
P6 
p7 

3722 6044 9644 

4:; 
179 973 
795 1095 

435 1073 1495 
477 1233 1853 
641 1359 2619 
717 1589 3365 _ _ 
793 

Pi 1141 
p9 1163 0 
PlO 1359 
Pll 1535 
P12 1787 

M 3722 6044 9644 
Pl 153 43 53 
PP 223 87 263 
P3 517 89 893 
P4 859 179 1121, 
P5 861 1421 1259 
P6 911 1479 2945 
P7 991 1589 3281 
P8 995 2095 4397 
pg 1453 2191 4727 
plo 1705 2783 4801 

1667 3493 
1675 3567 
1677 3595 
1917 3863 
2095 4063 
2189 4497 

~.__ 
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Table 2.- Multidimensional,Integration in Two Independent Variables 

No. of 
Sample 
Points 
-_-- i _ 

538 

1154 

I 
CPU Time 

(Sets) Conroy Monte Carlo 

0.61672 

I 0.61667 0.169 

0.155 0.61672 

0.178 0.61669 
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Table 3.- Second Order Scattering Contribution to Sky Radiance 
(Double Integration over Angular Coordinates). 

Solar Zenith Angle es = 57O 

__._ __._~..~~~_ .__ 
I t Double Scattering Contribution I2 

Observation i 
Zenith Conroy I Monte Carlo 

No. of Angle +p CPU I CPU 1 
Sample Points/ in Sun Time I2 Time 

Vertical (Sets) (Sets) I2 / Trial irories 

1154 0 

20 
68.9 .3472(-2) 85.5 

.3632(-2) 
660 .3808(-2) 
72' .4060(-2) 

600 62.6 .3675(-2) *- ----- 8.17 .1108(-2) 

2,': 
.3841(-2) .5173(-2) 
.4001(-2) .4922(-2) 

72O .4354(-Z') .3501(-2) 

.1187(-2) 

.1624(-2) 

.8342(-2) 

.5202(-2) 

*The number within the parenthesis represents the power of 10, e.g., 
I-9) aPnnt.en 1n-2 
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Figure l.- Geometry illustrating the double scattering of sunlight 
by the atmosphere. 
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